Форум » Экспедиционный корпус » ПРоекты по исследованию Титана » Ответить

ПРоекты по исследованию Титана

Юрий Н.: http://compulenta.computerra.ru/universe/explore/10009709/ ПРЕДСТАВЛЕН НЕОБЫЧНЫЙ ПРОЕКТ ПЛАНЕТОХОДА ДЛЯ ТИТАНА Александр Березин — 24 октября 2013 года, 15:02 Плането-перекати-поле настолько неординарен, что даже некогда представленный планетопрыг вряд ли признал бы в нём родственника. Мы не раз писали о проблемах планетоходов в иных мирах: гравитация мала — а значит, и хорошего сцепления гусениц/колёс не предвидится. А ведь на многих малых телах Солнечной системы ну очень сыпучая поверхность: на Титане, к примеру, есть дюны... В своё время для Фобоса разрабатывался проект планетохода-«ежа». Внутри «ежа» размещены три вращающихся диска, раскручивание которых на малых оборотах позволит им «кантоваться» (как моаи в известном опыте по их перемещению по острову Пасхи), а высокие обороты позаботятся о прицельном прыжке на внушительную дистанцию. Ну а как быть с Титаном? Гравитация там «в разы» слабее марсианской и даже меньше лунной (только не спрашивайте, как он при этом удерживает атмосферу плотнее земной). Присовокупите к этому сыпучую поверхность, озёра, дожди и, предположительно, даже болота, скрытые под твёрдой на вид поверхностью. Обычный планетоход ждут блистательные перспективы застрять на первых же двадцати метрах! Впрочем, о чём мы, какой планетоход... Спускаемый аппарат «Гюйгенс» при посадке едва не проломил поверхность, считавшуюся твёрдой, и банально утонул бы в болоте, если бы не малое тяготение: Но и «ёж» для Фобоса вряд ли придётся здесь ко двору: гравитация спутника Марса в сотни раз слабее тяготения на спутнике Сатурна. Что же делать? В теории один корабль доставки может сбросить на Титан сразу много таких модулей, которые прямо в воздухе примут необходимую для безопасной посадки форму. (Здесь и ниже иллюстрации NASA.) Перекатываться, считают Эдриан Агогино (Adrian Agogino) и Витас Санспирал (Vytas Sunspiral) из Исследовательского центра Эймса (США). Для будущих НАСА-путешествий по этому небесному телу они предлагают использовать тенсегрити — принцип построения конструкций, который основан на применении элементов, работающих только на сжатие или только на растяжение. Никогда не слышали? Если вы не архитектор и не поклонник Кастанеды, это нормально. Вот, специально для такого случая: Всё это хорошо, но как планетоход будет работать? Когда потребуется применить масс-спектрограф или иную технику для анализов поверхности, аппарат сложится в треугольник, опустив находящиеся в центре научные модули на поверхность. Аппарат не только передвигается вперевалочку, но и способен пережить небольшие подскоки. Пока разработка Super Ball Bot находится на стадии концепта. Однако НАСА уже выделило средства на дальнейшее развитие проекта. Здесь ещё много неясностей: какова энергоэффективность такого перемещения, насколько сильно придётся модифицировать электродвигатели и мн. др. И всё же новинка выглядит многообещающе: сочетание малой гравитации и топкой поверхности на Титане для Солнечной системы уникально, и решение этой проблемы в интересах ровера действительно требует нетривиальных шагов. Как видите, этот набор элементов (трубочек и тросов), похожий на скульптуру перекати-поля в исполнении абстракциониста, позволяет после деформации возвращаться в исходное состояние без всяких усилий. Опять же, точек опоры множество, и сцепление оказывается достаточным в любой ситуации, в том числе после переворачивания. Даже если Super Ball Bot, как разработчики называют свой тенсегрити-планетоход для Титана, застрянет между парой камней, за счёт деформаций он всегда сможет выбраться. Если же он попадёт на топкое место, полному увязанию воспрепятствует множество точек опоры аппарата. При перебирании «конечностями» он нащупает сравнительно безопасный путь и выкарабкается на твёрдую поверхность. «Он действует, словно животные, — поясняет г-н Агогино. — Мускулы сокращаются и растягиваются. В определённом смысле, это тот же принцип, только более элегантный». По словам конструкторов, аппарат такой формы, строго говоря, не нуждается даже в парашюте и может быть сброшен с нескольких километров без особого ущерба. Атмосфера луны Сатурна вчетверо плотнее земной, что при семикратно меньшей гравитации и редкостной форме Super Ball Bot просто не даст ему разогнаться в свободном падении выше определённой скорости. Подготовлено по материалам Astrobiology Magazine. http://www.astrobio.net/news-exclusive/a-super-ball-bot-for-titan-a-baby-step-to-learning-about-saturns-unique-moon/

Ответов - 3

Серж: Титан больше и массивней Луны, и гравитация там должна быть больше. На счет песка, это скорее всего хрень собачья, на снимках Гюйгенса никакого песка и в помине нет, он кстати сел на самом берегу в жидкость. Там полно гигантских "дюн", но на настоящие дюны они мало похожи, Это невероятная загадка Титана.... Смотрел на титановское море, оно без волн вроде и прозрачное, видно дно, и дно весьма странное..... Планета невероятных загадок.... Надо ОБЯЗАТЕЛЬНО еще раз пересмотреть все фотки Гюйгенса, в большом увеличении, там должны быть дюны в большом увеличении, снятые непосредственно перед посадкой, так вот, там возможно и будет и найдена отгадка дюн, я просто не успел.... Ссылка на фотки в теме про исследование системы Сатурна на астрономи.

Юрий Н.: Увы, гравитация на Титане еще слабее, чем на Луне. Причина проста - плотность Титана значительно меньше лунной. Смотреть на "титановское море" невозможно - нигде нет и никогда еще не было снимков его поверхности с такого расстояния, чтобы можно было видеть волны или судить о его прозрачности. Есть только "снимки" радиолокации с "Кассини". На фотках Гюйгенса никаких водоемов тоже нет. Увы.

Юрий Н.: В морях Титана парус может быть лучше винта Александр Березин — 17 апреля 2014 года, 11:47 http://compulenta.computerra.ru/universe/explore/10012520/ Большие луны Солнечной системы традиционно манят исследователей. Но Титан выделяется даже на их фоне. Он единственный, кроме Земли, обладает крупными жидкими бассейнами на поверхности, реками и, быть может, болотами; тут бывают дожди, туманы и даже айсберги. Как бы их изучить? Все эти «водоёмы» метан-этанового состава безумно интересны не в последнюю очередь потому, что наука уверена: они не могут долго существовать, не подпитываясь из неких неочевидных источников, поскольку иначе жидкие углеводороды давно бы разложились. А это значит, что такие бассейны — либо временное явление в истории спутника Сатурна, либо результат сложной системы процессов, которую планетологи пока не осознают. Как вы помните, лучше всего тамошние моря исследовать с помощью планетоплава, то бишь планетохода, который будет перемещаться по предполагаемым мелководным морям Титана. Однако плавать по-земному у него не получится, так как жидкий метан по плотности — это всего лишь 45% от плотности воды. Чтобы не утонуть, аппарату потребуется по меньшей мере вдвое большее водоизмещение. И это лишь верхушка айсберга. Вязкость метана в жидком виде равна 0,08 от показателя земных морей. То есть традиционные движители вроде привычных винтов не будут там особенно эффективны. Конечно, можно использовать необычные вариации на тему стандартных винтов, но эти схемы рискованны: не зная глубины, проектировать движитель очень сложно — винты могут утыкаться в дно, а если их делать приповерхностными и компактными, КПД окажется мизерным. Отправить недешёвый планетоход за полтора миллиарда километров только для того, чтобы он зарылся в сатурнианской дали винтами в дно, — риск, на который вряд ли стоит идти. И тут Майкл Хабиб (Michael Habib) из Южно-Калифорнийского университета (США), известный своими усилиями по реконструкции биомеханики птерозавров, предлагает необычный выход: обратить недостатки жидких бассейнов Титана в достоинства. Да, малая вязкость делает винты плохими помощниками, зато и трение, испытываемое любым планетоплавом в такой жидкости, будет много меньше. Число Рейнольдса, напомним, пропорционально соотношению плотности к вязкости, а трение, испытываемое судном, обратно пропорционально числу Рейнольдса, поэтому «титановое» трение равно 0,26 земного. То есть, отказавшись от винтов и гребных колёс (рассматривался и такой вариант!), судно будет прикладывать намного меньше усилий для движения. Но что заменит привычные движители? Лучшим кандидатом г-н Хабиб считает их прямых предшественников — паруса. Современные паруса, выполненные по типу жёсткого или тканевого вертикального крыла, позволяют плыть под очень большими углами к ветру, обеспечивая почти ту же свободу манёвра, что и мотор. В условиях слабого трения парус будет даже слишком скоростным движителем: хотя ветер на Титане, по измерениям «Кассини-Гюйгенса», всего лишь 3 м/с, вчетверо более плотная атмосфера превращает его в эквивалент сильного земного ветра. Поэтому, несмотря на то что средняя скорость воздушных течений над морями Земли равна 6,6 м/с, медленный ветер Титана должен нести 83% от энергии земных воздушных потоков. Причём необходимо заметить, что измерения «Гюйгенса» велись над точкой посадки, которой была выбрана суша, где ветер обычно слабее. Ну а моделирование атмосферных процессов в плотных газовых оболочках показало, что ветер там значительно устойчивее, чем на Земле, и это делает его неплохим кандидатом в тягловую силу. Важно и то, что ветру не нужен источник топлива. Напомним: большинство ранних проектов планетоплавов предусматривали запитку от «продвинутого стирлинга», разрабатывавшегося НАСА с 2003 года. Но бюджетные сокращения привели к закрытию проекта. Альтернативный радиоизотопный источник энергии должен питаться от плутония-238, но тот пока недоступен. Как же исследователям лун планет-гигантов быть? Титан получает в 100 раз меньше солнечной энергии на квадратный метр, чем Земля, что делает энергообеспечение от солнечных батарей слишком слабым. По сути, парусник для сатурнианской луны — это сейчас единственный реалистичный кандидат в планетоплавы. Впрочем, нет. Есть ещё Titan Mare Explorer — полузамороженная программа НАСА, которая после сворачивания «продвинутого стирлинга» свелась к... плавающему бую, не способному активно передвигаться. На этом фоне парус смотрится намного более привлекательно со всех точек зрения: течение не снесет его на банку или берег; забирая круче к ветру, он может исследовать весь водоём, в котором окажется, а это тысячи квадратных километров метано-этановой глади с невысокими волнами. Titan Mare Explorer. Image credit: NASA/JPL Но и к идее Майкла Хабиба в её нынешнем виде тоже есть вопросы. Для обеспечения большого водоизмещения и длинной ватерлинии (без которой не будет высокой скорости) исследователь предлагает сделать судно сравнительно глубокосидящим и при этом протяжённым, аргументируя это тем, что при малой высоте волн это позволит избежать опрокидывания. Однако более рациональной схемой представляется катамаран, который позволит получить и вдвое большее водоизмещение, и длинную ватерлинию при той же осадке, что и у обычного однокорпусного судна, сводя к минимуму риск сесть на мель или опрокинуться при внезапном порыве ветра. Наконец, катамаран лучше подходит для парусов, поскольку может выдержать больший крен, неизбежно возникающий от хода под боковым ветром, и поэтому заметно лучше движется против ветра, в том числе лавировкой. Опять же, на площадке между корпусами можно разместить немало солнечных батарей, которых тогда хватит для периодической подпитки сонара и радиоаппаратуры. Доработку деталей вполне можно поручить специалистам НАСА, если у них когда-нибудь появятся деньги на такой проект. Сама же идея парусника для Титана, определённо, кажется чрезвычайно здравой. Подготовлено по материалам Universe Today. http://www.universetoday.com/111216/lets-put-a-sailboat-on-titan/




полная версия страницы